Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 8(15): 3661-3667, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28722417

RESUMO

Tin monosulfide (SnS) is an emerging thin-film absorber material for photovoltaics. An outstanding challenge is to improve carrier lifetimes to >1 ns, which should enable >10% device efficiencies. However, reported results to date have only demonstrated lifetimes at or below 100 ps. In this study, we employ defect modeling to identify the sulfur vacancy and defects from Fe, Co, and Mo as most recombination-active. We attempt to minimize these defects in crystalline samples through high-purity, sulfur-rich growth and experimentally improve lifetimes to >3 ns, thus achieving our 1 ns goal. This framework may prove effective for unlocking the lifetime potential in other emerging thin-film materials by rapidly identifying and mitigating lifetime-limiting point defects.

2.
ACS Appl Mater Interfaces ; 8(34): 22664-70, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27494110

RESUMO

As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing "false-negative" results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400 °C) to stimulate grain growth, followed by a much thinner, low-temperature (200 °C) absorber deposition. At a lower process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and we demonstrate a more than 3.5× superior shunt resistance Rsh with smaller standard error σRsh. Electron-beam-induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility.

3.
J Vis Exp ; (99): e52705, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26067454

RESUMO

Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm(2). Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices.


Assuntos
Energia Solar , Sulfetos/química , Compostos de Estanho/química , Volatilização
4.
Adv Mater ; 26(44): 7488-92, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25142203

RESUMO

Tin sulfide (SnS), as a promising absorber material in thin-film photovoltaic devices, is described. Here, it is confirmed that SnS evaporates congruently, which provides facile composition control akin to cadmium telluride. A SnS heterojunction solar cell is demons trated, which has a power conversion efficiency of 3.88% (certified), and an empirical loss analysis is presented to guide further performance improvements.

5.
Adv Mater ; 22(37): 4193-7, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20512818

RESUMO

Identically configured bulk heterojunction organic solar cells based on merocyanine dye donor and fullerene acceptor compounds (see figure) are manufactured either from solution or by vacuum deposition, to enable a direct comparison. Whereas the former approach is more suitable for screening purposes, the latter approach affords higher short-circuit current density and power conversion efficiency.


Assuntos
Corantes Fluorescentes/química , Pirimidinonas/química , Energia Solar , Compostos Bicíclicos Heterocíclicos com Pontes/química , Fulerenos/química , Polímeros/química , Poliestirenos/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...